
Int. J. Solids Structures Vol. 30, No.2, pp. 199-209, 1993
Printed in Great Britain.

0020-7683/93 $5.00+.00
© 1992 Pergamon Press Ltd

DYNAMICS OF A BEAM MOVING OVER MULTIPLE
SUPPORTS

H.-P. LEE
Department of Mechanical and Production Engineering, National University of

Singapore, 10 Kent Ridge Crescent, Singapore 0511

(Received 27 January 1992; in revisedjorm 8 July 1992)

AlJstract-The equations ofmotion ofa beam moving over multiple supports are fonnulated based
on Hamilton's principle and the assumed mode method. The supports are either roller supports
which impart motion to the beam or frictionless supports with the beam being pushed or pulled
over them. In both cases, the supports are regarded as very stiff springs acting on the moving beam.
A feature of the present fonnulation is that its complexity does not increase with an increased
number of supports. Results of numerical simulations are presented for various prescribed motions
of the beam.

1. INTRODUCTION

Beams acted upon by moving loads have received a good deal of attention for a long time
in connection with the machining process and applications in the behavior ofrailway tracks
and bridges under moving loads. The classical solution of a beam subjected to a constant
moving load was presented by Timoshenko (1992). Subsequent studies by Nelson and
Conover (1971), Benedetti (1974), Steele (1967), Florence (1965), and Katz et al. (1987)
include the effects of elastic foundation, moving mass and deflection dependent moving
loads. A related problem involving beams of infinite length moving over supports, or acted
upon by moving loads was presented in a series of papers by Adams (1976, I978a, b, 1979),
Adams and Bogy (1975) and Adams and Manor (1981). The present problem for the
dynamics of a beam of finite length moving over supports was first presented by Buffinton
and Kane (1985) using the method of Kane's dynamics. As pointed out in their work, the
forces exerted on the beam by the supports have magnitudes depending on the motion of
the beam. Moreover, the beam moves not only relative to an inertial frame but also relative
to its support. The external forces that cause the motion of the beam, however, were not
stated explicitly in the paper.

In the present study, equations ofmotion in matrix form for a finite beam moving over
multiple supports are formulated using Hamilton's principle and the assumed mode method.
The external forces that cause the motion of the beam are either in the form of the frictional
forces supplied by a roller which acted as a support at the same time, or external forces
applied at one end of the beam. Supports which are not in the form ofa roller are assumed
to be frictionless. These supports are regarded as very stiff springs acting on the moving
beam. It will be shown in the formulation that the complexity of the formulation does not
increase with the increased number of supports.

2. THEORY AND FORMULATIONS

The beam considered is assumed to be a uniform beam oflength L moving horizontally
over two supports. Two different combinations of supports will be considered for the
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Fig. I. A beam moving over two frictionless supports.

present study. The first combination, shown in Fig. 1, consists of two frictionless supports.
Horizontal forces are applied at the left end of the beam to pull or push the beam over
these supports. The second combination, shown in Fig. 2, consists of a roller support and
a frictionless support. The beam is rolled forward or backward over the supports by the
frictional forces developed between the roller and the beam. The assumptions made in the
development of the following formulation are that transverse deflections are small so that
the dynamic behavior of the beam is governed by the Euler beam theory. Moreover, all the
transverse deflections and the axial motion of the beam occur in the same plane defined by
°I and 02 unit vectors fixed in the inertial frame. A set of mutually perpendicular unit
vectors i, j and k is assumed to be fixed in the beam with the i vector parallel to the 01

vector and the origin located at the left end of the beam. Flexibility of the beam in the axial
direction i is assumed to be negligible compared to the lateral direction j.

The position vector of a general point P on the deformed beam is given by

The velocity at the point is

p = xi+wj.

Vp = Vi+wj,

(1)

(2)

where w= dw/dt and Vi is the prescribed velocity of the beam at x = 0 as a result of the
external applied forces or the frictional forces developed between the roller and the beam.
Due to the assumption of axial rigidity, V is also the i component of the velocity for every
point along the beam.

The kinetic energy T of the beam is

(3)

where m is the mass of the beam per unit length.
Assuming Euler's beam theory, the elastic strain energy of the beam due to bending is

(4)

where E and I are the Young's modulus and the central principle second moment of area
of the cross-section of the beam about the k axis, respectively.

The supports are regarded to be very stiff springs of stiffness k. The potential energy
due to the supports is

\~L:::::;:--8- 1-----"
Fig. 2. A beam moving over a roller support and a frictionless support.
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(5)

where x = a and x = b are the coordinates of the supports relative to the moving beam.
These relative locations ofthe supports change with the motion of the beam. w(a) and w(b)
are the deflections of the beam at x = a and x = b, respectively. It can be seen from the
above expression that increasing the number of supports will only increase the number of
terms in eqn (5). It will not directly affect the expressions for kinetic energy, strain energy,
and the following expression for the potential energy due to the axial forces of the beam.

The potential energy due to the axial forces, lx, is

I [L (OW)2
Va = 2Jo Ix ox dx. (6)

The axial forces, Ix, will be dependent on the external forces applied to the beam. For
the case of a beam moving over a pair of frictionless supports shown in Fig. I, the right
end of the beam is stress free as the beam is being pulled or pushed over the supports by
external forces applied at the left end of the beam. The axial forces for the remaining part
of the beam are

Ix = -mrOdr

= -mO(L-x). (7)

For a beam being rolled over the supports shown in Fig. 2, both the left and right ends
of the beam are stress free as there are no external applied forces at these two ends. With
the roller support at x = a, the axial forces within the beam are

for a ~ x ~ Land

Ix = -mrOdr

= -mO(L-x)

Ix=mfOdr

=mOx

(8)

(9)

forO ~ x < a.
The discontinuity ofIx at x = a is due to the presence of the frictional forces at x = a

developed between the roller and the beam. The difference in Ix at x = a is the frictional
force required to carry out the prescribed motion of the beam.

The quantity w is expressed as

n

W = L q/(t)(/>i{x),
i-I

(10)

where 4>/ are spatial functions that satisfy the geometric boundary conditions at the two
ends of the beam. For the present study, 4>/ are assumed to be the normalized modal
functions for the vibration of a uniform unrestrained beam. The assumed functions are
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(II)

(12)

(i = 3, ... ,n), (13)

where

cos Aj-cosh Aj
'Yj = sin Aj - sinh Aj

(14)

and AI, ... , A. are the consecutive roots of the transcendental equation

I-cos Acosh A= O. (15)

¢ I and ¢2 correspond to the rigid body translation and rotation of an unrestrained
beam. The assumed form of w enables the kinetic energy, the strain energy and the potential
energy to be expressed in matrix form. For the case in Fig. 1with the external forces applied
at the left end of the beam, the matrix forms of the energy involving ware

(16)

(17)

(18)

(19)

where M, H, Y, Q and cJ)m are matrices defined as

(Q)ij =r¢;¢j dx,

(20)

(21)

(22)

(23)

(24)

It can be seen from the above expressions that M, H, Y, Q and cJ)m are symmetric
matrices. All the matrices except cJ)m are independent of time. cJ)m need to be updated as the
beam is moving over the supports. ¢; and ¢;' denote the first and second derivatives of ¢i
with respect to x. q and q are n x 1 column vectors consisting of qi and qi respectively.

The Lagrangian of the beam involving w can be expressed as
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(25)

The Euler-Lagrange equation for a beam moving over supports shown in Fig. I is

mMq+(EIH+mUY+k(J)-mULQ)q = O. (26)

For the case of a beam being rolled over supports shown in Fig. 2, the matrix
expressions for T, V. and Vs remain the same. The matrix expression for Va is

(27)

where Q\ is a symmetric matrix defined as

(28)

The corresponding Euler-Lagrange equation for a beam moving over supports shown
in Fig. 2 is

mMq+(EIH+mUY+kCJ)-mULQ\)q = O. (29)

3. RESULTS AND SIMULATIONS

Sinusoidal longitudinal motions
The equations ofmotion generated in the preceding sections can be included in numeri

cal simulation programs for investigating the response of a beam undergoing various
prescribed motions. The numerical integrations are performed using the fourth order
Runge-Kutta method. For the present numerical simulations, L = I m, m = 1kg m - I, and
EI = 1 N m - 2. The beam is assumed to be moving over two supports with a separation of
D = 0.25 m. The initial configuration of the beam is such that the two supports are located
symmetrically at a = 0.375 m and b = 0.626 m. The initial shape of the beam is described
by

(30)

q\ and q3 are determined from the conditions that w = 0 m for both supports at
a = 0.375 m and b = 0.625 m, and w = 0.01 m at x = 0 m and at x = L m. Since f/JI
corresponds to the rigid body translation, the initial shape of the beam is the first symmetric
flexural mode shape ofan unrestrained beam passing through the two supports. The natural
frequencies for this beam without longitudinal motion are 16.246 and 20.771 Hz for the
first and second modes (Buffinton and Kane, 1985). This prescribed initial shape of the
beam is different from the prescribed initial shape of the beam in the work by Buffinton
and Kane (1985), which is the deformed shape of a beam by a statically applied, uniform
load such that the deflection at the left end of the beam is 0.01 m. The present initial shape
of the beam is assumed so that the step of optimal curve fitting for the initial deformed
shape of the beam can be avoided. Moreover, a minimum of four-term approximation for
w is required to enforce general prescribed initial displacements at x = 0, x = L, and the
constraint of zero displacement at x = a and x = b. Any optimal curve fitting for the
prescribed initial deformed shape of the beam will require that the number of terms in the
approximate function for w be four or greater than four.

For a prescribed longitudinal sinusoidal motion of the beam, the variation of x = a is
assumed to be
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a = 0.375-A sin at m. (31)

For a beam moving over supports shown in Fig. 1, the transverse displacements at
x = 0 and x = a of the beam for a = 20 rad s- 1 and A = 0.05 are shown in Fig. 3 using
six-term approximation for w (n = 6). It can be seen that the tip displacements at x = 0 for
k = 105

, k = 106 and k = 107 are almost identical. On the other hand, the displacement at
the left support (x = a) is almost negligible for k = 106 and k = 107

• The displacement at
the right support (x = b) is also found to be negligible for these two assumed values of
stiffness. The execution time for the numerical integrations is found to increase with
increased value of k. For the following simulations, k is chosen to be 106 N m - I. Numerical
simulations for such a value of k can be performed quite efficiently within a few minutes,
depending on the prescribed longitudinal motion, on a 486-33 MHz personal computer.

The tip displacement at the left end of the beam for a = 10,20 and 22 rad s- 1 and
A = 0.05 are shown in Figs 4--6. In Fig. 4, the beam shows a stable behavior, the same as
the stable behavior of the beam reported by Buffinton and Kane (1985). Moreover, the
displacements for n = 6 and n = 7 are close to each other. Unstable behaviors are observed
in both Figs 5 and 6, the same as the behaviors predicted by Buffinton and Kane (1985). In
Fig. 7, A is reduced to 0.025 for a = 20 rad s- 1 and the beam is found to exhibit a stable
behavior, consistent with the corresponding predicted results of Buffinton and Kane (1985).

A general stability analysis can be performed by the method presented by Buffinton
and Kane (1985) using Floquet's theory. Such a laborious analysis will not be performed
for the present study. The present study, however, will attempt to show the different
behavior of the beam if the longitudinal sinusoidal motion of the beam is imparted by a
roller as shown in Fig. 2.

For the beam moving over supports shown in Fig. 2, the motion of the beam is
imparted by the roller support. The computations are in general more time consuming as
the matrix Q 1 needs to be updated during the prescribed longitudinal motion for this type
of support configuration. The tip displacements of the beams for A = 0.05, k = 105 N m - I,

a = 20, 10 and 22 rad S-I are shown in Figs 8-10. For w = 20 rad s- \ the beam shows an
unstable behavior. However, the rate of increase of the tip displacement is very much slower
than the corresponding rate of increase for the tip displacement shown in Fig. 5. The
behaviors of the beam for a = 10 and 22 rad s- I, shown in Figs 9-10, are dramatically
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Fig. 3. Tip displacements for a beam moving over supports shown in Fig. I, Q = 20 rad s- I, -,
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Fig. 4. Tip displacements for a beam moving over supports shown in Fig. I, n = 10 rad s- I, --,

n = 4, •. _., n = 5, , n = 6,·.-.-.·, n = 7.

different from the behaviors of the beam shown in Figs 4 and 6. As in the case of a beam
moving over supports shown in Fig. 1, the stability of the beam moving over supports
shown in Fig. 2 is also found to be dependent on the prescribed value ofn.

Repositioning maneuver
For a prescribed repositioning maneuvering of the beam, the variation of x = a is

assumed to be
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Fig. 5. Tip displacements for a beam moving over supports shown in Fig. 1, n = 20 rad s- I, --,

n = 4, ••• -, n = 5, , n = 6, - . - . - . " n = 7.
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Fig. 6. Tip displacements for a beam moving over supports shown in Fig. 1,0 = 22 rad S-I,_,

n = 4, ----, n = 5, , n = 6, -. -. -. -, n = 7.
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where C I specifies the initial position of the beam, C2 is the horizontal distance traversed
by any point on the beam due to the assumption of axial rigidity, and Td is the duration of
the prescribed motion. For the same prescribed initial position of the beam as in the
longitudinal sinusoidal motion, C 1 = 0.375 m.
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Fig. 7. Tip displacements for a beam moving over supports shown in Fig. I, 0 = 20 rad s- 1,
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Fig. 8. Tip displacements for a beam moving over supports shown in Fig. 2, n = 20 rad S-I,_,
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The tip displacements of the beam for repositioning maneuvering with C2 = 0.35 m
and Td = 0.35 s are shown in Fig. 11 for both cases of support configurations shown in
Figs 1 and 2. It can be seen from Fig. 11 that there are some noticeable differences in the
two behaviors of the beam for such a "fast" prescribed motion of the beam. On the other
hand, for a relatively "slow" prescribed motion with C2 =0.35 m and Td = 3.5 s, the two
behaviors of the beam, shown in Fig. 12, appear to be almost identical for the two different
support configurations. The apparent reduction in the period as well as amplitude of
vibration for the tip displacement at x = 0 is due to the decreasing distance between the
free end at x = 0 and the left support at x = a.
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Fig. 9. Tip displacements for a beam moving over supports shown in Fig. 2, n = 10 rad S-I, n = 6.
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Fig. 10. Tip displacements for a beam moving over supports shown in Fig. 2, n = 22 rad s- I, n = 6.

4. CONCLUSION

Approximate equations ofmotion in matrix form are derived for the motion of a beam
moving over multiple supports using Hamilton's principle and the assumed mode method.
The external forces that cause the motion of the beam are either in the form of the frictional
forces supplied by a roller which acts as a support at the same time, or external forces
applied at one end ofthe beam. For longitudinal sinusoidal motion of the beam, numerical
simulations show that the behaviors of the beam with these two different modes of applied
forces can be dramatically different depending on the frequency of the prescribed longi
tudinal excitation. For repositioning maneuvering of the beam, the behavior of the beam
also changes with different modes of applied external forces for relatively fast prescribed
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Fig. II. Tip displacements for a beam undergoing a "fast" repositioning maneuver. - - - -, support
configuration in Fig. 2, - support configuration in Fig. I, n = 6.
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Fig. 12. Tip displacements for a beam undergoing a "slow" respositioning maneuver. - - - -, support
configuration in Fig. 2, -- support configuration in Fig. I, n = 6.

motions of the beam. On the other hand, the behaviors of the beam appear to be the same
for different modes of external applied forces if the prescribed longitudinal motion of the
beam is over a relatively long duration.
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